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Abstract. The brain-computer interface (BCI) has become one of the most
important biomedical research fields and has created many useful applications.
As an important component of BCI, electroencephalography (EEG) is in general
sensitive to noise and rich in all kinds of information from our brain. In this
paper, we introduce a new strategy to filter out unwanted features from EEG
signals using GAN-based autoencoders. Filtering out signals relating to one
property of the EEG signal while retaining another is similar to the way we can
listen to just one voice during a party. This approach has many potential
applications including in privacy and security. We use the UCI EEG dataset on
alcoholism for our experiments. Our experiment results show that our novel
GAN based structure can filter out alcoholism information for 66% of EEG
signals with an average of only 6.2% accuracy lost.
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1 Introduction

Being an essential input signal of a Brain-Computer Interface (BCI), EEG has been
harnessed in a variety of interesting and useful applications for users and has changed
our life in various areas. The EEG is defined as the overall measurement of human
brain electrical activity using electrodes placed on the scalp. Since it is an overall
measurement, this makes EEG applicable to diverse areas like personal recognition [1],
disease identification [2, 3], sleep stage classification [4], even to rebuild the picture
from a person’s eyes [5], and so on.

Taking personal recognition as an example, compared with fingerprint or face
recognition, EEG has more advantages in identifying different people because it has a
higher safety factor. For instance, if one person’s fingerprint is stolen or one person’s
face is reconstructed by others, it is basically an irreparable problem because both
fingerprint and face model are irrevocable without expensive and painful plastic sur-
gery. But for EEG data, if it is hacked by others, users can still reset a new EEG pattern
because the EEG recognizer can identify a person by both personal details and personal
brain action [1].
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But being full of information also means full of personal privacy issues for personal
identification. For example, if we would like to use EEG for a personal recognition task
for a bank, the only information we would like to upload is personal identity-related
information and not share the full EEG with the bank, as it may contain information
related to a disease or condition we may have. But since there currently does not exist a
suitable information filtering algorithm, both the bank and hackers will also be able to
get our other information like disease information, emotion information and so on.

But to be able to filter out unwanted features faces many difficulties. First, the
property we mentioned of EEG being full of information also generally means full of
noise and interference, making it hard to filter out unwanted features exactly. Second,
filtering out features is not as easy as cutting off a bounding box in computer vision
(CV), it is more like a transformation from the whole since EEG is not interpretable for
all its features. Third, filtering out unwanted features also means we need to retain
normal EEG trial properties, and we have to make sure our desired features are
maintained during the operation.

As a result, we consider deep learning methods, which have achieved success in
many areas like CV and natural language processing (NLP). In practice, we do not use
the idea of subtracting features to filter out properties as such properties are not well-
defined. Instead, we choose to generate a new EEG trial without the unwanted features
but maintaining the desired features of the original EEG trial signal. So as the result, a
generative adversarial network (GAN) based technique is utilized to create such an
EEG signal. In this paper, we introduce GAN-based autoencoders, which is as an
extension of our previous work [6]. As mentioned earlier, the feature filter of EEG is
more like a style transformation. So we are inspired by the idea of Image-to-Image
translation [7] introduced in the computer vision area. This approach is designed to
map one image distribution to another image distribution in order to achieve a style
transformation. In our paper, such a translation mechanism is used for feature filtering.

2 Related Work

EEG2Image is a work designed to transfer EEG signals to images which is derived from
Bashivan’s work [8]. Shown in Fig. 1, each trial of EEG is transformed to a colored image
using both the time-series information and electrode location information. The trans-
formation procedure is as follows. First, for a single trial of EEG signal, Fast Fourier
Transform (FFT) is performed to extract three frequency bands, theta (4–7 Hz), alpha
(8–13 Hz), and beta (13–30 Hz). Then, calculate the sum of squared absolute values for

Fig. 1. EEG signal to image example [6]
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each frequency band, thereby giving each electrode three scalar values to describe it.
Next, using Polar Projection to project 3-D electrode position to 2-D position to create 2-D
position sets in a 2-D map with three values to describe it. Then, with CloughTocher
scheme to interpolate values between positions, we can produce consistent 2-D color
images which reproducibly represent an EEG trial as a full color image.

Generative adversarial networks (GANs) are systems of two neural networks con-
testing with each other in a minimax game framework [9]. The GAN approach has
achieved great success in the image generation area [10–12]. GANs include two main
parts, namely a generator and a discriminator. The generator is mainly used to learn the
distribution of the real image and produce images in order to fool the discriminator,
while the discriminator needs to accept real images while rejecting generated images.
Throughout this process, the generator strives to make the generated image more
realistic, while the discriminator strives to identify the real image. The key part of GAN
is the adversarial loss. For the image generation task, the adversarial loss is very
powerful for images in one domain transformed to the other domain since this domain
cannot be discriminated by simple rules.

Image-to-image translation is a kind of system that can learn the mapping between an
input image distribution and an output image distribution using two separate image
domains [7]. Shown in Fig. 2, given a source distribution X, we are aiming to use a
generative model G to map our source distribution X to target distribution Y. An
example is shown in Fig. 3, though it is not perfect, the translation system has suc-
cessfully transformed between the most important features between zebra and horses
like the hide color. In this translation system, we do not explicitly tell the neural

Fig. 2. CycleGAN structure

Fig. 3. Image translation example [13]
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network to change some features. Instead, we have the prior knowledge of two separate
image distributions. As a result, it is possible for us to extract the stylistic differences
between two image distributions and then directly translate them from one domain to
the other domain.

Cycle-Consistent Adversarial Networks (CycleGAN) is a well-known image-to-
image translation for unpaired images [13]. It overcomes the difficulty of getting paired
images, and forms an autoencoder-like structure to achieve image translation. In Fig. 2,
G is such a generator that generates a domain Y image from domain X, while F is the
generator that generates a domain X image from the domain Y. Dx and Dy are two
discriminators that are used to justify whether the coming image really belongs to
domain X or domain Y, respectively. The training procedure can be separated into two
symmetric parts. One is X ! G Xð Þ ! FðGðXÞÞ. In this autoencoder-like loop, the
training loss comes from two parts, the first is the discriminator loss which comes from
Dy to judge whether G(X) is really from domain Y and the second is the reconstruction
loss to judge whether F(G(X)) is the same as X or not. The other loop Y ! F Yð Þ !
GðFðYÞÞ is the same in principle.

But all these GAN methods are based on two hypotheses. One is that it is possible
to build a strong classifier that can discriminate such features, and the second is the
availability of a reliable generator that can filter out original features and rebuild target
features. For the first hypothesis, if we cannot train a strong classifier in normal labeled
training, it will be almost impossible for us get a strong discriminator in training,
because adversarial training itself is not well designed to help train the discriminator.
That is not an issue for many GAN based methods which have achieved great success
in the CV area, since the most popular current datasets like MNIST [14] and CIFAR-10
[15] have already achieved more than 90% accuracy using different CNNs to serve as
accurate discriminators. In contrast to CV, since the NLP area does not have a uni-
versally recognized text classification method for grammar checking, current GAN
methods for NLP, like Seqgan [16] and its improved version Leakgan [17] do not have
a strong discriminator to guide the generator. For our second hypothesis, we have to
have a strong generator which can rebuild features. But building a strong generator is
strongly related to the given type of data. For the image translation area, convolution
and deconvolution-based methods are often used. The U-net [18] based method is the
current state of the art [7].

Image-wise autoencoders [6] are the solution we use to meet the two hypotheses of
building a GAN for EEG. An image-wise autoencoder is used to extract discriminative
and robust features from EEG images. During the autoencoder training, it can reduce
reconstruction loss to a very low level for the test set, making it possible to become a
generator for the GAN structure. Furthermore, when we connect the features to a fully
connected layer to work as a classifier, it achieves convincing results with more than
90% accuracy in the within-subject test [19], showing it has the ability to be a strong
discriminator.
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3 Methodology

3.1 UCI EEG Dataset

The dataset we use is from UCI; it is a multi-label dataset. This EEG dataset was
created by the Neurodynamics Laboratory at the State University of New York. It has a
total of 122 subjects with 77 diagnosed with alcoholism and 45 control subjects. Each
subject has 120 separate trials [20]. If a subject is labeled with alcoholism, all 120 trials
belonging to that subject will be labeled as alcoholism. The stimulus they use are
several pictures selected from the Snodgrass and Vanderwart picture set. As a result, for
each trial of EEG signal, there are both alcoholism and stimulus information labels.

3.2 Gan-Based Autoencoder

The Gan-based Autoencoder is mainly used for data filtering and the latent represen-
tation of this autoencoder is the filtered result we want. Our Gan-based Autoencoder is
the same structure as the CycleGAN structure [13]. We call it a GAN-based Autoen-
coder mainly because it is principally still in a data->latent representation->original
data structure and uses reconstruction loss. So in this autoencoder design, we take this
latent representation as our filter result. As introduced before, the training procure can
be split into two separate training loops, and each loop has two separate losses. The
detailed loss definitions are as follows.

Fig. 4. Structure of GAN-based autoencoder
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A. Adversarial Loss:

The adversarial loss is mainly designed to judge whether the incoming image really
belongs to a certain distribution. So take loop X ! G Xð Þ ! FðGðXÞÞ for example, it is
designed to map distribution X to distribution Y using generator G. The adversarial loss
for this loop is defined as

LGAN G;DY;X;Yð Þ ¼Ey� pdataðyÞ log DY yð Þ½ �
þEx� pdataðxÞ log ð1� DY GðxÞð ÞÞ½ � ð1Þ

This is a common GAN loss, where G(x) is trying to fool the discriminator DY to
make the generated image become more similar to image distribution Y. A similar
adversarial loss is introduced for loop Y ! F Yð Þ ! GðFðYÞÞ.
B. Autoencoder Loss:

The autoencoder loss (reconstruction loss) is mainly used as a regularization term to
make sure the generated image is not from random selection, because the target dis-
tribution could have multiple choices. The autoencoder loss will help the generator to
choose a target image which also maintains some feature(s) from the original image in
order to help reduce the reconstruction loss. Also, take loop X ! G Xð Þ ! FðGðXÞÞ for
example, It is defined as:

LAL G; Fð Þ ¼ Ex� pdataðxÞ½jjF G xð Þð Þ � xjj1� ð2Þ

The Autoencoder Loss is the same as common autoencoder mean squared loss to
judge whether F(G(x)) is really like x or not. A similar autoencoder loss is introduced
for loop Y ! F Yð Þ ! GðFðYÞÞ as well.

Shown in Fig. 4, we use EEG images with alcoholism condition and then map them
to an EEG image with the control condition. By doing this transformation, we aim to
eliminate alcoholism information from an EEG image while still maintaining its
stimulus information. Inspired by the Image-wise autoencoder, shown in Table 1, our
modified version of Image-wise autoencoder is now working as our generator, and the
combination of Image-wise autoencoder and one fully connected layer works as our
discriminator. Adam optimizer is used with 0.0002 learning rate.

Table 1. The detailed generator structure

Encoder Decoder
Input 32 � 32 � 3 Color Image Input 128 � 8 � 8 Matrix

4 � 4 conv, Leaky ReLU,
4 �4 conv, Leaky ReLU,
3 � 3 conv, Leaky ReLU,
3� 3 conv, Leaky ReLU

4 �4 Deconv, Leaky ReLU,
4 �4 Deconv, Leaky ReLU,
Tanh
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3.3 Evaluation Method

The evaluation method for GAN is a difficult problem which needs to take many
factors into account [21]. For a long time after the original GAN paper was published,
the generated results from GANs still needed to be judged by manual selection in the
CV area. But after the critical work from Google brain, the Fréchet Inception Distance
(FID) and F1 scores [21] were introduced to judge the generation quality of a GAN.
Both the FID and F1 score require a strong pretrained classifier in CV, making it
impossible to directly use in the bio-signal area.

Thus, we learn from the idea of using FID and Inception Score (IS) but simply use
the idea of training an additional classifier to judge the classification accuracy changes.
The classifier we take is still the Image-wise autoencoder with fully connected layer
(FC) which is trained separately from adversarial training. In this work, we are trying to
filter out alcoholism information while keeping stimulus information. So, the desired
best result should be that we get a large alcoholism accuracy reduction while keeping
reasonable stimulus accuracy (low stimulus accuracy reduction) through the GAN
based autoencoder.

4 Results and Discussion

The picture generated by our GAN-based autoencoder is shown in Fig. 5. These are six
generation examples randomly selected from all generation pairs. We can see our GAN
works and makes some slight modification to the images. The fact that we cannot see
interpretable features from these transformations, means the generated results from our
GAN cannot be manually checked. So we turn instead to digital indicators. Here, we
only evaluate whether our generated image is really removing features we do not want
using the normal Image-wise autoencoder with a classification net [6]. From Fig. 6, we
can see that 96.1% of the original images are correctly classified as alcoholism, which
is a good result on this dataset and shows our underlying approach works. After our
GAN-based autoencoder has processed these images, only 29.8% of the images are
classified as alcoholism. That is 2/3 (66.3%) of images have their alcoholism infor-
mation filtered out. At the same time, only 6.2% accuracy has been lost for stimulus
accuracy, and its accuracy still remains well above chance, which is 20% in this case as

Fig. 5. GAN-based autoencoders output
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there are 5 stimulus conditions. Also, from the figure above, it seems that our GAN-
based autoencoder does not change our EEG images much by eye, but it has already
filtered out one feature of the original EEG image. That is a very interesting result and
further study is needed to determine whether we can remove all alcoholism features
while retaining stimulus features without loss of accuracy. As a summary, it turns out
that our GAN-based autoencoder can filter out alcoholism information to some extent.

5 Limitation and Future Work

The first limitation is in using accuracy only as performance evaluation. This is an issue
because there could be various ways to reduce accuracy like adding random noise or
adversarial attacks [22]. One potential solution to this is to check whether such methods
can achieve the same performance as GAN-based autoencoder. The second limitation is
that there is still a 6.2% accuracy drop in stimulus classification. One possible solution
is to try to add a stimulus discriminator to provide a penalty for stimulus information
loss. But since the stimulus classifier is currently far from a strong classifier. Our 56.9%
is reasonable where chance is 20%, but cannot really be called ‘strong’. Thus, the result
of adding a stimulus discriminator is not predictable. The third point is future work for
the generator, the U-net structure should be tried since it is the current state of the art
method for image translation.

6 Conclusion

Removing or filtering features out of EEG signals is difficult, but we have shown some
excellent initial results. This approach can lead to many useful applications, such as
privacy protection. An example could be where a hospital stores only the medical
condition related EEG signal, but the bank stores only personal identification part of an
EEG (assuming a future ATM collects EEG for greater security). This paper introduces

Fig. 6. GAN-based autoencoders performance
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GAN-based autoencoders, which transfer the feature filtering task to an image trans-
lation task. The experiment results show that our GAN-based autoencoder can filter out
a large proportion of unwanted features while mostly keeping desired features, as
evaluated by using accuracy drops. Limited by time, the potential of these models is not
fully revealed, with further adjustment and fine-tuning, the performance could be
increased.
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